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O. Introduction 

This paper presents an algebraic treatment of  an analogue of  topological K-theory 
at the level of characteristic classes, as outlined in [2]. It is not what is usually called 
algebraic K-theory. The idea is to replace the Steenrod Algebra by a fairly general 
Hoof algebra, topological spaces by algebras over this Hopf  algebra, and vector 
b~:::'51es by an algebraic analogue of the cohomology of the Thorn space of a vector 
bun:Sie. We use the term 'Thorn module'  for this last object. Thorn modules have 
found use by Stephen Mitchell in [6]. 

1. The abelian group K(A,H) 

Throughout this paper,  all algebras and Hopf  algebras will be over a fixed but 
general ungraded commutative ring with unit R. ® will denote tensor product over 
R. The term ' H o p f  algebra'  will mean a non-negatively graded, associative, 
coassociative, cocommutative,  connected H o p f  algebra over R. If A is a H o p f  
algebra, the term 'algebra over A '  will mean a non-negatively graded, associative, 
co=_mutative, connected algebra over R which is also an algebra over the H o p f  
algebra A in the sense of  Steenrod [7], i.e. H is also a graded left A-module and 
we require 

(i) (Cartan formula) 

a - ( h i  U h 2 ) =  ~ ( - 1 )  lh'l ia'l(a{, h l ) U ( a  7 • h2) 
I 

whenever aeA, h, eH, and Aa= ~,a;®aT. (All elements are assumed homo- 
geneous, ix[ denotes the grade of  x, and we write U for the product operation in 
H as well as for left H-module actions below. Without explicit mention, a; and a7 
v~-~" always be as above and 

2 a'~®a;'=a@ 1 + 1 @ a +  2 a;@a;' 
t 0 < l a ; l < , a ,  

when tal >0. )  
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(ii) a .  1 = 0  whenever l a[ >0.  
We consider A-H modules M (or equivalently HQA-modules  where H Q A  is the 

semi-tensor product of H and A as in [39, i.e. M is both a graded left A-module 
and a graded left H-module such that the Cartan formula (i) holds with h2 replaced 
by an element of M. 

Definition 1.1. An A-H Thom module is an A-H module which, as a module over 
H, is free on one zero-dimensional generator. 

The motivating example is when A=.~C2=mod2 Steenrod algebra, H =  
H*(X; 7//2) where X is a topological space, and M=H*+n(T(~) ;  7//2) where ~ is a 
real n-plane bundle over X and T(~) is the Thom space of ~. 

If M1, ME are A-H modules, so is M 1 ®HM2 with A-action given by 

a.  (rnl ~)m2) = ~ ( -1 )  [aTI Imllctf" ml ®aT" m2, m, eM~, aeA.  
l 

Coassociativity and cocommutativity of A ensure that the natural H-isomorphisms 

for A-H modules Mi are also A-maps. If  M1, M2 are A-H Thom modules, so is 

M1 ®H M2" 

Definition 1.2. Let H be an algebra over the Hopf  algebra A. The A-characterist& 
K-group of H, denoted K(A, H), is the set of all A-H isomorphism classes of A-H 
Thorn modules. 

It follows from the foregoing that ® n  induces an operation on K(A, H) giving 
K(A, H) the structure of a commutative semigroup. There is a unit element for this 
operation, namely the class of H. We will see below that inverses always exist, giving 
K(A,, H) the structure of an abelian group. We write + for the above operation 
in K(A, H), and [M] for the element of K(A, H) represented by the A-H Thorn 

module M. 
In the motivating example, ®H corresponds to Whitney sum of vector bundles. 

Thus, for finite complexes X, there is an evident natural homomorphism/(0(X)~  
K(.~/2, H*(X; 7//2)) which, in general, is neither injective nor surjective. 

Given an A-H Thom module M, the A-action on M is described as follows: If 
U e M  ° generates M as an H-module, then for each a c A ,  there exists a unique 
w(a, M) ~ H ial such that a.  U = w(a, M) U U. 

Definition 1.3. The function w(-, M):A  ~ H  is called the Stiefel-Whitney map of 
the A-H Thom module M. 

Thus w(., M)  is a grade-preserving R-homomorphism and determines M up to A- 
H isomorphism. Note that w(1, M ) =  1. 
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In the motivating example above, w(Sq',tzI*+~(T(~);Z/2))=w,((), the i th 

Stiefel-Whitney class of  the n-plane bundle ~ [5]. 

Proposition 1.4 (Whitney Product  Formula). I f  M I , M 2 are A - H  Thom modules, 

then 

w a, MI M2 ~ w(al, Ml) tai, M2). 
I 

'~~e proof  is easy. 
Given an A - H  Thorn module M, it is easily seen, by induction on grade, that there 

exists a unique grade-preserving function w(., M)  : A --, H satisfying ~(1, M)  = 1 and 

w(a'~,M)UCv(a;,M)=O for lal>0. 
1 

Definition 1.5. ~(-, M)  is called the dual Stiefel- Whitney map of M. 

By the Whitney Product  Formula,  if there exists an inverse to [M] in K(A, H),  
i.e. an A-H Thorn module 57/such that M®/437/is  A - H  isomorphic to H, then 
p.~..;essarily w(., )9/) = ~(-, M). Thus to prove that K(A, H) is a group, it remains to 
s i r  ~ that for each A - H  Thom module M, ~(-, M) is the Stiefel-Whitney map of  an 
A-~ ~ Thom module. We proceed to obtain a criterion (the Composition Formula) 
for a general map w : A ~ H  to be the Stiefel-Whitney map of an A-H Thom 
module, and then prove that ~(. ,  M) satisfies this criterion for every A - H  Thom 

module M. 

Theorem 1.6 (Composit ion Formula).  Let w : A --" H be a graded R-homomorphism 
satisfying w(l )=  1. Then w is the Stiefel-Whitney map o f  an A - H  Thom module i f  

and only i f  for  all a, b c A ,  

w(a. b)= ~ (_ 1)ta,", ~bt[a/. w(b)] U w(a;'). 
I 

Proof. If w= w(. , M )  for an A - H  Thom module M, generated by U E M  ° as an H- 
module, the composit ion formula expresses the condition (a b). U=  a.  (b. U). 

Conversely, suppose w satisfies the composition formula. Let M be the free left 
H-module on one generator U e M  °. For a e A ,  h eH,  define 

J t ,  I 

a. (h U U) = ~ ( -  1) tht la, ~(a,. h) 0 w(a;') U U. 
l 

We wish to verify that  this defines an A-action on M, giving M the structure of  an 
A-H Thorn module with w(-, M ) =  w. The only non-trivial point to be checked is 

(a b). (h 13 U) = a .  [b- (h U U)] whenever a, b e A, h e H. 

Whenever G~,.. . ,  G, are graded R-modules and a is a permutation of  { 1 . . . . .  n}, 
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let 

To : GI ® "'" ® Gn ~Goo)  ® "'" ® Ga¢,) 

denote the graded permutation map. Let 
denote the respective multiplication maps,  
a : A ® H ~ H  denote the composition 

Zi ® 1 T(23) 
A ® H  ' , A ® A ® H  

It A : A ®A- '~A  and ]-/H : H ® H - ) H  
and (o : A ® H ~ H  the A-action. Let 

~p® w Pn 
) A ® H ® A  ) H ® H  ~H. 

Then a .  (h U U) = a(a ® h) U U, and the condition to be checked is commutativity of 

(1) 

UA® 1 
A ® A ® H  .... , A Q H  

1 
A ® H  , H 

o~ 

The composition formula asserts commutativi ty o f  

A ® 1 T~2s) 
A @ A  , A ® A ® A  , A ® A ® A  

l ® w ® w  
, A ® H ® H  

(2) 

¢o®l 

UA H ® H  

#H 

W 
A , H  

A direct check on elements yields commutativity o f  

a ®A ® l T(zss) 
A ® A ® H  , A ® A ® A ® A ® H  , A ® A ® H ® A ® A  

(3) a(l®a) l ® ¢p® w ®  w 

H ,  H ® H ~  A @ H Q H ~  A @ H ~ H @ H  
[1 H (p ® 1 1 ® g H ®  1 
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We have the commutative diagram 

(4) 

A @ H @ H @ H  

1 @ P H @  1 

A @ H @ H  

A @ l @ l @ l  

( p @ l  

,A@AQH@H@H-. T(23) 
~A@H@A@H@H 

, H ® H ,  
PH® I 

l*u I 
l l f l  

H,  

H @ H @ H  

1 @[,.1 H 

H@H 

the top polygon commuting by the Cartan formula, and the bottom square by 
associativity of H. A direct check on elements yields commutativity of 

A ® I ® 1 ® I ® I  
,4,2 ~ ~ A @ A Q H  ~ A ® A ® A ® A ® A ® H  

Ti ,641 
" A ® A Q A ® H ® A ® A  

/t2~J 
A @ A , ~ H @ A @ A  

A ® A Q H ® A ® A  
~q2 i 

$ 

A @ H Q A Q A ® A  

A @ H @ H ® H  

H ® A @ A @ A  

H @ A @ H @ H  

A"" : ~ H @ H Q H  

(5 
T,,.,, A @ H Q A ® H Q H  

~,~,,p~; 1 
' H@HQH 
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We have the diagram 

A ® A ® H  

A Q A ® A ® A ® H  

A®A®i 
) A ® A ® A ® A ® H  

J A®]®l®l®] 

) A ® A Q A ® A Q A ® H  
~®A®l®l®l 

) A Q A ® A ® H ® A Q A  
7h~l 

l®l®~o®l®l 

A @ A ® I t Q A ® A  A ® A @ H ® A @ A  

~®~®~®1 r,2,, 

A ® H ® A ® A  A ® H ® A  ®A ® A  

~®1®1®] 

(6) 

H Q A  ® A  ' H ® A Q A  Q A  ) H ( ~ A ® A  ®A 
1 ® A  ® 1 T(u ) 

where the top square commutes by coassociativity of A, and the bottom polygon 
commutes by a direct check on elements. 

Diagrams (3), (4), (5), (6) and the diagram obtained from (2) by tensoring on the 
left with the identity map on H, yield the commutative diagram 

A Q A Q H  

ct( 1 ® a) 

A ®A ® 1 T~z4ss) 
' A ® A  Q A  Q A  (~H , A ® A ® H ® A ® A  

1®~0®1®1 

(7) 

H , H@H< 
laH 

H ® A  , H ® A ® A  , A ® H ® A ® A  
l ® w  l ® p  A (o®l ®1 
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We have the diagram 

A @ H @ A  @A,  

(8) 

¢®1®!  

H @ A Q A  

l ® ( p @ l @ l  
- A @ A @ H @ A @ A  

A @ H @ A  

bt4@ 1 @/14 
~ A @ H @ A  

] ~o@ w 

H @ H  

1®~4 

1 
' H@A 

l@w 

Hi: 

1111 
H @ H  , H 

wi:ere commutativity of the two pentagons is immediate, and commutativity of the 
so?,. are follows from the fact that a .  (b. h )=  (ab). h for all a, b e A, h e H. 

Diagrams (7) and (8) yield commutativity of 

(9) 

A @ A @ H  

l u(1 ® a) 

H ~ . . . . . .  

A®A.,~ 1 A @ A @ A @ A @ H  Tcz4531 A @ A @ H @ A @  A 

uA @ 1 @/L1 

H @ H  ~. A Q H @ A  
lz H ~® w 

~'inally, a direct check of  elements, using the fact that A is an algebra homomor-  
pk.:m, yields commutativity of  the diagram obtained from (9) on replacing a(1 @ 0t) 
by a(~A @ 1), completing the proof.  

Theorem 1.7. I f  H is an algebra over the Hopf  algebra A, K(A, H) is an abelian 
group under the operation induced by @tt on A-H Thorn modules. 

Proof. Let M be an A-H Thorn module and write w = w(-, M),  ~: = ~,(., M) .  It re- 
mains to show that ~ satisfies the composition formula. We proceed to show that 
the composition formula holds for ¢v(ab) by induction on lal + Ib!. Trivially, the 
composition formula holds for w(ab) when either [a] = 0 or I bl= 0. Suppose i aF> 0, 
~c. >0,  and that the composition formula holds for ~v(a'b') whenever la'] + tb'P < 
[, - ;b I. Write 

! pl ¢ t !  Aa= ~ a,®a, ,  Ab= E bj®b;. 
t j 
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Then 
A(ab)= ~., (-1)  la;I b'j aioj~a,'"'-" "'"Ov. 

t,J 

Thus by definition of r9 

(1) ~ w(bj)Ucv(bj')=O, and 
J 

(2) ~, (-1)la'llO;Iw(a;bj)UW(aTb])=O. 

By the inductive hypothesis we can replace each ¢v(aTb]) in (2) for which 
[aTI + I b~'l < l al + I bl by the composition formula expression for it. By the inductive 
definition of w, it suffices to show that (2) holds when the ¢e(ab) term on the left 
is also replaced by the composition formula expression for it. Write 

A a ; =  2 c;(i)(~¢p't(,), Aa; '= ~., dq(,)®dq"ti). 
p(t) q(t ) 

Replacing each w(a;b'j) and ¢e(aTb]) in (2) by the composition formula expression 
for it, the left-hand side of (2) becomes the image of 

(3) E C'p(,)®cp"(i)®dq(,)®dq"(i)@b'j®b] 
~,J, pO),q(t) 

under the composition 

A ® A ® A ® A ® A ® A  

T(23465) 

(4) A ® A ® A @ A @ A ® A  

l ® w® w ®  l ® fv® Cv 

A @ H ® H ® A @ H ® H  , H ® H ® H ® H  mult. 
,H. 

By coassociativity and cocommutativity of A, the expression (3) equals 

(5) ~, (-1)lc~"llaMIc'p(i)®d'q(,)®c'~i)®d'q'u)®bj®b]. 
~,J, p(i), q(t ) 

Evaluating the composition (4) on the expression in (5), a straightforward computa- 
tion using the associativity and commutativity of H and the Cartan formula yields 

,, o, [ . q , ,  

which is 0 by (1), completing the proof. 
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2. Functoriality and representability of K ( A , H )  

For a fixed non-negatively graded, associative, commutative, connected algebra 
H over the ground ring R, we can form the category of H o p f  algebras under H.  An 
object of this category is a H o p f  algebra A over R, together with a given action of 
A on H making H an algebra over the Hopf  algebra A. A morphism f :  A-- .B in 
thi~ category is a unit and grade-preserving homomorphism of Hopf  algebras over 
R - ' L~ that a. h=f (a) ,  h for all a e A ,  h e l l .  If f :  A ~ B  is a morphism of Hopf  
alge ::'as under H,  and M is a B - H T h o m  module, we obtain an A - H T h o m  module 
f * H  by taking f ' M =  M as a left H-module,  and imposing a left A-action via f and 

the given left B-action. In terms of Stiefel-Whitney maps, w ( . , f * M )  = w(., M)  of .  
We obtain a map f *  : K(B, H ) ~ K ( A ,  H), easily seen to be a group homomorphism.  

Dually, for a fixed Hopf  algebra A, we can form the usual category of algebras 

over A. If g : H ~ J  is a morphism of algebras over A and M is an A - H  Thorn 

module, we obtain an A-J  Thom module g . M  = J®t4 M by regarding J as an A - H  
module via g. In terms of Stiefel-Whitney maps, w(., g , M )  = g o w(., M).  We ob- 

tain a map g .  : K(A, H)--*K(A, J), easily seen to be a group homomorphism. 
The following proposition is immediate. 

Pro~osition 2.1. For fixed H as above, K(-, H) is a contravariant functor f rom the 
categor) of  H o p f  algebras under H to the category o f  abelian groups. 

kbr a fixed H o p f  algebra A, K(A, . ) is a covariant functor front the category o f  
algebras over A to the category o f  abelian groups. 

For a fixed Hopf  algebra A we proceed to construct a representing object for the 

functor K(A, .  ), i.e. an algebra H A over the Hopf  algebra A together with an A - H  A 
Thorn module MA such that for each A - H  Thorn module M, there is a unique mor- 
phism f ~ t : H A ~ H  of algebras over A such that M is A - H  isomorphic to 

(f~,, : . tM4 ). 

Definition 2.2. Let A be a H o p f  algebra. For each homogeneous element a e A of 
positive grade, associate an abstract symbol w(a). Let LA denote the free graded 

left A-module on the graded set {w(a) laeA, lal >0} where lw(a)i = la[, and TA the 
tensor algebra over the ring R on L A. The left A-action on L A extends uniquely to 
a left A-action on TA, making TA a non-commutative algebra over the H o p f  
algebra A (the free associative algebra on L A over the Hopf  algebra A). Let I A 
denote the smallest ideal in TA which is closed under the action on A, and which 
contains all elements of the form 

alq_£. 

x @ y - ( - 1 )  ixllyty@x, w ( a + b ) -  w(a)-  w(b), 

w(ab) - ~ ( -  1) I°;'~ ibl [a;. w(b)] ® w(aT) 
l 

w(ka) - k w(a), 
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where x , y~L  A, a, b are homogeneous elements in A of positive grade, and k eR. 
The classifying algebra HA of A is defined to be TA/IA. 

HA is an algebra over A. Write w(a)~ HA for the image of w(a) in TA under the 
projection. By definition of 1,4, the map w:A-*HA which sends 1 to 1 and a to 
w(a), jal >0, satisfies the composition formula, and hence is the Stiefel-Whitney 
map of an A-HA Thorn module M A. Moreover, if H is an arbitrary algebra Over 
the Hopf algebra A, and M an A-H Thom module, there is a unique homomor. 
phism of algebras over A, fM : HA --,H, such that fM(w(a)) = w(a, M). Thus M is 
A - H  isomorphic to (fM).(MA). 

Definition 2.3. M A is called the classifying Thom module for A. fM is called the 
classifying map of the A-H Thom module M. 

If  H and J are algebras over the Hopf algebra A, so is H ®  J with A-action given 
by 

a - ( h  Q j )  = ~ ( -1 )  la;'l Ih!(a~" h)®(a'i'.j). 
l 

Moreover, if M is an A - H  module, N an A-J  module, M ®  N is an A - H ®  J module 
with A-action given by 

a . ( m ® n ) =  ~ (-1)~o711ml(a~.m)®(aT.n). 
I 

In particular, if M is an A-H Thom module, N an A-J Thom module, then M ® N  
is an A-H® J Thom module. 

Proposition 2.4. If M is an A-H Thom module, N an A-J Thom module, then 

w(a ,M®N) ~ ' ' " = ~ (a,, M) @ w(a,, N). 
I 

The proof is immediate. 
In particular, for any Hopf  algebra A, MA(~M A 

module. 
is an A-HA ® HA Thorn 

Proposition 2.5. For any Hopf  algebra A, H A is a Hopf algebra with diagonal 
A : HA~HA®HA the classifying map for rheA-HA®HA Thom moduleMA®MA. 
Moreover, w: A ~ H A  is a morphism of  coalgebras over R. 

The proof is straightforward, using the universality of M A. 

Thus for any algebra H over the Hopf algebra A, the set of unit and grade- 
preserving A-algebra homomorphisms AlgA(HA,H) becomes an abelian group 
with operations as follows: If f,  g ~ Alg A (HA, H), f +  g is the composition 

,d f ~) g U H 
H A , H A @ H  A , H @ H  ' H  
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and - f  is the composition 

X f 
HA 'HA -~H 

where Z is the canonical conjugation of the Hopf algebra H A [4]. 

proposition 2.6. Let H be an algebra over the H o p f  algebra A. Then the map 
K' ~, H)-~AlgA(HA, H)  sending [M] to fM is a natural isomorphism of  abelian 
g! : ~ ~S. 

The proof is straightforward. 

Remark 2.7. In the above theory we have not attempted to formulate the analogue 
of unstable algebras over the Steenrod algebra [7]. In particular, in the case of the 
rood 2 Steenrod algebra, since H~j 2 is universal for all algebras (not just unstable 
ones) over ,~/2, H~/2~H*(BO; 7//2). In fact, SqEw(Sql)~:0 in H~,. 

If f :  A---'B is a homomorphism of Hopf  algebras, and H is an algebra over B, H 
becvmes an algebra over A with action a.  h =f(a)-  h, and f is a morphism of Hopf  
alg~-~::as under H. In particular H e becomes an algebra over A. Let Hf:  HA -"He 
denGte the classifying map for the A - H  B Thom module f * M  8. Explicitly, 

(Hf)(w(a)) = w(f(a)) for all a ~ A. 

Proposition 2,8. I f  f : A ~ B  & a homomorph&m of  H o p f  algebras, then 
Hf  : HA--'He is a homomorphism o f  H o p f  algebras, and the classifying algebra 
becomes a co variant functor f rom the category o f  H o p f  algebras to the category o f  
commutative Hop f  algebras. 

The proof is straightforward. 

3. Examples 

We show how to calculate K(A, H) when A--R[x1, . . . , X r n ] ~ g ( y l ,  "" ,Yn) ,  the 
tensor product of a polynomial algebra over R on even-dimensional generators xz, 
and an exterior algebra over R on odd-dimensional generators y,. Theorem 3.1 
below reduces the computation to the cases of polynomial and exterior algebras on 
a single generator. 

Suppose A and B are Hopf  algebras. We have Hopf algebra homomorphisms 
i~ : 4 ~ A  @B, i 8 : B ~ A  ®B,  PA : A @ B ~ A ,  PB :A ( ~ B ~ B  given by 

iA(a ) = a @  1, iB(b ) = 1 (~)b, 

PA(a(~b)=cB(b)a, pB(a@b) =eA(a)b 
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where eA, eB are the respective augmentations. If  H is an algebra over A ® B , / /  
becomes an algebra over A via i n and over B via i B. 

Theorem 3.1. Let A and B be H o p f  algebras, and suppose H is an algebra OVer 
A ® B .  Let a : K ( A ® B , H ) - - , K ( A , H ) ( ~ K ( B , H )  and ~ : K ( A , H ) @ K ( B , H ) ~  
K(A ® B, H)  be given by 

ct[M] =(i~][M],i~[M]), B([M], [N])=p][M] +p~[N]. 

Then a and fl are isomorphisms, inverse to one another. 

Proof. 

afl([M], [N] )=  (i~ p~[M] + i,]p~[N], i~p,~[M] + i~p~[Nl). 

Since PAiA = 1 A, i~p,~[M]=[M]. Similarly i~p~[N]= IN]. since PsiA and PAi n 
both factor through the Hopf  algebra R and K(R, H ) =  O, i~p~[M] = 0 = i~p,~ IN], 
and so aft is the identity. 

fla[M]=p~i,][M] *'* [ @ M] +pBts[M]= (iAPA)*M (iBPe)* 

and so it suffices to check 

( 1 ) w(., M)  = w(., (i A PA )*M ® (i BpB)*M) 
H 

for all A ® B-H Thorn modules M. Since for all a e A,  b e B, a ® b = (a ® 1)(1 ®b) 
in A ® B, it follows from the composition formula  that any Stiefel-Whitney map 
for an A ® B-H Thorn module is determined by its values on elements of the form 
a ®  1 and 1 ® b .  Since A(a® 1)= ~ , ( a : ®  1 )®(aT® 1), we have, by the Whitney 
product  formula,  

w(a@ 1, (iAP,4)*M@ (iBps)*M) = ~ w(a:® 1, (iAPA)*M)U w(a:'@ 1, (iBPB)*M) 
H t 

= ~ W(iAPA(a:® 1),M)Uw(iBpB(a:'® 1),M) 
I 

= ~ w(a:® I,M)Uw(iBPB(a;'® 1),M). 
I 

Since iBpa(a:'® 1)=0  unless ]a:'] = 0, the only non-zero contribution to this last 
! gt 

sum occurs when a i =a and a, = 1, and so (1) holds on elements of  the form a ®  I. 
Similarly (1) holds on elements of  the form l ® b ,  completing the proof.  

Example 3.2. A = E(x), the exterior algebra over R on an odd-dimensional generator 
x. For any algebra H over E(x), the function w(x,. ) : K(E(x), H ) - ~ H  Lxl is injective, 
and is an additive homomorphism since x is primitive. The composition formula 
yields that an element h e H Ixl is in the image of  w(x, • ) if and only if x .  h = h 2. 
Thus w(x, .) is an isomorphism of K(E(x),H) onto the the additive group 



Thom modules 249 

{ h 6 H  '~1 i x - h = h 2 } .  The classifying algebra He,x)is R[w(x)]/(2w(x) 2) with E(x)- 
action given by x.  w(x)= w(x) 2. 

Example 3.3. A=R[x],  the polynomial algebra over R on a positive even- 
dimensional generator x. As in Example 3.2, the function w(x, .):K(R[x], H ) ~ H  Ixl 
is an injective additive homomorphism.  It is easily seen that there is no restriction 
on ".he image and so w(x,. ) is an isomorphism of  K(R[x], H) onto H ix! for every 
al~-~ra H over R[x]. The classifying algebra HRtx] is R[w(x),x. w(x), x z. w(x), ... ]. 

Tke following is immediate from Proposition 2.6. 

Proposition 3.4. Let A be a H o p f  algebra and suppose {Ha} is an inverse system 
of algebras over A. Then K(A, li_m~ H~) is naturally isomorphic to lima K(A, H~). 

Example 3.5. Let H be an arbitrary algebra over the mod 2 Steenrod algebra "/2, 
and M a non-trivial ",/2-H Thorn module. If r is the smallest positive integer such 
that w(Sq r, M):g0,  r must be a power of 2. This follows from the composition for- 
mula and the decomposability of  Sq' in -~2 if i is not a power of 2 [1]. 

~_ et ). denote the canonical real line bundle over real projective n-space ~P", and 
let _ =/-t*+ 1(T(2); 2/2).  If M is an arbitrary ~./2-H*(~Pn; 7//2) Thorn module, and 
r the smallest positive integer such that w(Sq r M):gO, it follows from the Whitney 
product formula that either 

L @ . . . ( ~ L @ M  
~_.¢_____J 

F 

(tensor product over H*(I~P"; 7//2)) is a trivial 7J2-H*(I~Pn; Z/2)  Thorn module, 
or the smallest i for which 

w(Sc(, L@ ... @ L @ M) :gO 

F 

is sL=ictly larger than r. By an induction on n - r, it follows that there exists a positive 

q such that 

L @ . . . @ L @ M  

q 

is trivial, and consequently [L] generates K(~,/z,H*(RPn;Z/2)). Since w(Sq 1, L) 
generates H~(~.P"; 7//2) and w(Sq', L ) = 0  for i >  1, it follows easily that 

K( '/2, H*(~Pn;  7//2)) --- 7//2 k 

wi:~:, generator [L] where 2 k is the smallest power of  2 which exceeds n. Thus, from 
Pr:.vosition 3.4, it follows that 

K( ~/2, H*(~P°~; 7//2)) = lira g /2  ~. 
4_... 

k 
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4. Wu classes and the Wu formula  

Classically the Wu classes of a closed n-manifold X are defined, using Poincar~ 
duality, to describe the action of the Sq' into Hn(X; 7//2) [8]. The Wu formula ex- 
presses the Stiefel-Whitney classes of X as linear combinations of the Sq i on the 
Wu classes, from which it is possible to inductively determine the Wu classes from 
knowledge of the Stiefel-Whitney classes and the action of the Steenrod algebra. We 
take the Wu formula as the basis for defining the Wu classes of an arbitrary A-H 
Thom module, and then prove that under certain circumstances (analogous to the 
condition that the top cohomology of the Thom space of the normal bundle be 
spherically generated) cupping with these Wu classes gives the action of A into H n 
for appropriate n. Poincar6 duality is not required for this treatment. Indeed, we 
give an example of a topological situation where cupping with the Wu classes of a 
vector bundle gives the action of the Steenrod algebra on the cohomology of the 
base space into an appropriate dimension, yet the base space is not a Poincar6 
duality space. 

Defini t ion 4.1. Let H be an algebra over the Hopf algebra A, and let M be an A-H 
Thom module. The Wu map of M, o(., M) " A--* H, is the grade-preserving R- 
homomorphism defined inductively on [al by requiring 

o(1, M ) = I  and w(a,M)= ~ a;o(aT, M). 
I 

Example 4.2. Let X be a closed n-dimensional manifold, r the tangent bundle of 
X, and M the .Z/E-H*(X;Z/2 ) Thom module I-TI*+n(T(r);7//2). Then by the 
classical Wu formula [8], o(Sq', M ) =  oi(X), the ith Wu class of X. 

L e m m a  4.3. For any A-H Thom module M, 

o(a, M ) =  ~ z(a;)" w(a'/, M) 
I 

where X : A ~ A  is the canonical conjugation. 

Proof.  We proceed by induction on ]a[, the result being trivial if [al = 0. Assume 
la[ >0.  By the inductive definition, 

o(a, M) = w(a, M) - I I I  

a,. o(ai, M). 
1071 < ,al 

Write 

! ! H aa,= E 
J(O 

By the inductive hypothesis, 

u(a, M) = w(a, M)  - 

Aa;'= E 
kO) 

2 
laTl<lal E ,] a,. ~ X(Ck(o)" w(ck(,),M 

kO ) 
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= w(a,M)-  ~ a/z(e£o)), w(c'k'o),M)+ ~ x(a/), w(a;',M) 
t, lqt) l 

- w ( a , M ) -  ~., bj(,)z(b'j~,)) ~,(a, ,M)+ ~_, z(a;), w(a, ,M),  
J ( t )  I 

this last equality following from the coassociativity of A. Since 

b'J°'x(bJ'~')): I~ if [a~'/>0, 
1~,~ if a ;=  1, 

the assertion follows. 

Lemma 4.4. For every A - H  Thom module M, 

o(a,', M) U u(af, ~-I) = 0 whenever l al > O. 
l 

P r o o f .  Writing w = w(., M) and rV= w(., i9/) we have, by Lemma 4.3, 

u(a/,M)Uu(a;',)9I)= ~ [x(bj( , )) .  w(b']~i))]U[x(C'k¢,~)" ~(c~l,))]  
1 i , j ( l ) , k ( i }  

where the notation is as in 4.3. By cocommutativity of A, this last expression equals 

(1) ( -1)  `b;Li lC''',ir,,'~' . . . . . .  tZtuj(i) ) • W(Ck(t))] U [z(bj( , ) )-  W(Ckft))]. 
l, J ( t ) ,  k(I  ) 

The cocommutativity of A implies Z is a morphism of coalgebras [4] from which 
it follows that the expression in (1) equals 

' Ua," " .7 (2) ~t x ( a ; ) "  k(t)2 W(Ck(t)) (Ck(t))~" 

Since 

I°I w(ck. )U t = 
kit ) 

if ]a;'I >0,  

if " a l =1, 

the expression in (2) equals g(a)- 1, which is 0 since [a i >0.  

T h e o r e m  4.5 (Wu Formula). Let H be an algebra over the H o p f  algebra A, M and 
A-H Thom module, and n a positive integer with the property that a . x = 0 whenever 
a~A,  x~f,'I, la[>O, and lal+]xi=n.  Then a . h = v ( a , M ) U h  whenever h ~ H ,  
a~A,  and la[+lhl=n.  

Proof. We proceed by induction on [a], the conclusion being trivial when !a] = 0. 
Suppose a e A ,  h e l l  satisfy [a]>0 and ]al+lh[=n. Let 0 generate 37I ° as an H- 
m,.Jule. By hypothesis, a - (h  U U)= 0 which yields 

(_ 1)1 ;'i iht(a;, h)U w(a;', : 0. 
l 
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Thus,  by Definition 4.1 we have, using the notation in the proof of Lemma 4.3, 

( -  1)la"" Ihl(a; . h) U [c~(,) • O(Ck"(i ), A7"/)] = O. 
z, k0) 

By coassociativity of A and the Cartan formula, 

0 =  ~ ( -1 )  Ihl(Ib;~'~l + la"l)(bj0 ) • h)U [bj'~,). o(a;', A7/)] 
I,J(I ) 

= ~ (-1)la"l Ihra; • [hUo(aT,)9l)] 
I 

I M D 

= a . h +  ~ a , . [ o ( a i , M )  Uh]. 
,a', < ;oi 

Thus, by the induction hypothesis and Lemma 4.4, 

I H 
a. h = - ~ o(a,, M )  U O(tli, JVI) Uh 

!a; , i <ra~ 

, . ] = o(a, M)  U h - ~. o(a,, M)  U o(a i , tffI) 
l 

Uh 

= o(a, M )  U h. 

Example 4.6. Let X be a smooth connected closed n-dimensional manifold,  smoothly 
embedded in the n + k sphere with normal bundle v. Suppose Y is a subcomplex of 
X of dimension _< n - 2 such that v is trivial on Y. Then if p : X - - , X / Y  denotes the 
projection, v- -p*~ for some k-plane bundle ~ over X / Y  and/-In+k(T(~); 2~/2) is 
generated by a spherical class. Thus the . ~2 -H*(X /Y ;Z /2 )  Thom module 
M=/-7*+k(T(~); 7//2) has the property that a.  x = 0  whenever ae,~/2, x ~ M ,  lal >0, 
and [a l+lx l=n .  Thus, writing o=o(.,A7/), it follows from Theorem 4.5 that 
a. h = o(a)Uh whenever ae,~/2, h e H * ( X / Y ;  7//2), and lal + Ihl =n .  The point of 
this trivial extension of the classical case is that H * ( X / Y ;  Z/2) need not satisfy Poin- 
car6 duality. 
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